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ABSTRACT
The ability of a macrophage to engulf and break down

invading cells and other targets provides a first line of

immune defense in nearly all tissues. This defining ability

to “phagos” or devour can subsequently activate the

entire immune system against foreign and diseased

cells, and progress is now being made on a decades-old

idea of directing macrophages to phagocytose specific

targets, such as cancer cells. Engineered T cells provide

precedence with recent clinical successes against liquid

tumors, but solid tumors remain a challenge, and a

handful of clinical trials seek to exploit the abundance of

tumor-associated macrophages instead. Although

macrophage differentiation into such phenotypes with

deficiencies in phagocytic ability can raise challenges,

newly recognized features of cancer cells that might be

manipulated to increase the phagocytosis of those cells

include $1 membrane protein, CD47, which broadly

inhibits phagocytosis and is abundantly expressed on all

healthy cells. Physical properties of the target also influ-

ence phagocytosis and again relate—via cytoskeleton

forces—to differentiation pathways in solid tumors. Such

pathways extend to mechanosensing by the nuclear

lamina, which is known to influence signaling by soluble

retinoids that can regulate the macrophage SIRPa, the

receptor for CD47. Here, we highlight some of those

past, present, and rapidly emerging efforts to under-

stand and control macrophages for cancer therapy.
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Introduction
Phagocytosis is an ancient, cytoskeleton-intensive process of cell-
level eating that has continually evolved from amoebae to higher
organisms. In humans, phagocytosis is the defining process of the
MPS. The two principal cell types of the MPS are Mfs, which
reside in every tissue, and monocytes, which differentiate to Mfs
when exiting circulation to enter tissues [1, 2]. MPS cells, along

with highly phagocytic neutrophils, must—for the health of the
organism—selectively devour “foreign” targets, such as microbes,
rather than phagocytose the human “self” cells or extracellular
matrix that typically surrounds our phagocytes. Mfs have a
uniquely efficient capacity to phagocytose multiple targets, digest
them, and search for more, including some types of diseased cells
among healthy cells [3]. However, Mfs fail to perceive and attack
tumors despite their foreign (i.e. mutated) genomes [4, 5].
Mfs are abundant and motile in solid tumors [4–6]

compared with T cells, which infiltrate minimally [7–9].
The latter observations might help explain the poor clinical
trial outcomes for T cell therapy of solid tumors [10, 11]. On
the other hand, Mfs are not only “plastic,” in the sense that
they exhibit a broad capacity to differentiate in different
microenvironments, but also link the density of the “tumor-
associated Mf” phenotype with promoting tumor growth,
inducing angiogenesis, and inhibiting other immune effector
cells [5, 12–15]. Clinical data show that a high density of
tumor-associated Mfs is indeed correlated with poor progno-
sis [16]. Tumor-associated Mf is perhaps a misnomer in the
strict sense of the Mf as a giant cell that devours because
these cells seem to have lost most or all of their ability to
phagocytose, and their low MHC-II expression likely hinders
their activation of the adaptive immune system against tumor
neoantigens [1, 5, 17]. In efforts to address some of the above
challenges, engineering of Mfs ex vivo for “adoptive transfer”
back into patients with cancer has been pursued for many
years [18, 19], but some new insights into Mf interactions and
plasticity—as reviewed here—might prove useful in reinvigo-
rating such approaches (Fig. 1A). (The text in this article
adheres to nomenclature standards but might sometimes add
a species designator. For example, hCD47 and CD47 symbolize
the human protein and gene, whereas mCD47 and Cd47
symbolize the mouse protein and gene. The designators are
added because interactions tend to be species specific,
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whereas experiments are being conducted with tumor
xenografts.)

RE-ADOPTING Mf FOR CELL THERAPY

Adoptive Mf transfer was first pursued decades ago in some of
the earliest cell therapy efforts against cancer. Monocytes isolated
from peripheral blood were cultured in conventional dishes for
most preclinical studies and in Teflon bags for clinical trials, and
then “engineered” by differentiation into some form of adherent
Mf such as with IFN-g and LPS, before ultimately being injected
back into patients. Safety was established with injections ,1.5 3
109 cells [19]. For comparison, roughly 105 WBCs egress from
human marrow every second, and only ;5% are monocytes
(versus ;106 RBCs egressing per second), so that the Mf

injections are equivalent to what would be normally produced
over a few days as naive cells. However, efficacy assessments in
those early clinical trials showed little to no benefit of the in vitro
engineered Mf [18, 20–22].
It was understood decades ago that, for Mfs to destroy

cancer cells, they needed to be activated, and numerous
soluble and/or surface-bound factors could act as molecular
cues to stimulate MPS destruction of foreign targets. IgG Abs
are among the most modular (and now designable) because
they signal via the Mf membrane receptor FcgR (involving

specific isoforms of FcgR and IgG). IgGs produced by B cells
perfuse and diffuse throughout the body and bind to a target
surface so that when a Mf contacts the target, the constant
fragment (Fc) of the IgG binds the FcgR to signal phosphor-
ylation of ITAMs, which then propagate a phosphorylation
cascade that regulates adhesion and cytoskeletal remodeling
[23]. Phospho-paxillin, F-actin, and myosin-II are just a few
among many such proteins that subsequently accumulate
within minutes at this dynamic phagocytic synapse [24–26].
Ab-dependent, cell-mediated cytotoxicity and Ab-dependent
cellular phagocytosis by Mfs have indeed been reported to be
crucial to anticancer mechanisms in vitro and in vivo [27].
Studies often prove this by depletion of TAMs after systemic
injection of clodronate particles, but that approach has
shortcomings, as highlighted below. Nonetheless, those pro-
phagocytic signals are also balanced by inhibitory signals.
Engagement of FcgRIIB (CD32B) causes activation of ITIMs,
which promote internalization of pro-phagocytic IgGs, pre-
venting activation of ITAMs. Blocking FcgRIIB can prevent
internalization of therapeutic Abs, such as rituximab, and
thereby increase cell-surface accessibility of such Abs by Mfs
[28, 29].
Early studies of adoptive Mf transfer explored ex vivo

incubation of engineered Abs that targeted the Fcg receptors on
Mfs and specific Ags on tumor cells [30–33]. The approach

Figure 1. Anti-cancer Mf and CD47. (A) Time-
line of adoptive Mf transfer and CD47 studies
converging on anti-CD47–focused Mf therapies.
(B) Inhibition of cancer cell engulfment because
of recognition of CD47 by a nonphagocytic
phenotype, despite the presence of a pro-phagocytic
Ab. Addition of anti-CD47–blocking Ab and
a more phagocytic phenotype can drive engulf-
ment. The actomyosin cytoskeleton has a key role
in phagocytosis and in linking the microenviron-
ment to influence the phenotype. (C) Ab modifi-
cation (blocking SIRPa and loading Fc receptor
with targeting Ab) of marrow Mfs, followed by
systemic injection, could be an effective method
for adoptive Mf cancer therapy. In circulation,
antibody-primed Fc receptor plus anti-SIRPa
blocked Mf (A’PB Mf) could, in principle,
migrate into tumors, phagocytose cancer cells,
and then either exit the tumor or continue to
destroy tumor cells.
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failed to control tumor growth [19] with one explanation being
a minimal activation of the Mf Fcg receptor because the
downstream response varied greatly with engagement, Ab
isotype, and species [34]. Unfortunately, the apparent inability to
strongly activate and control phagocytosis dampened interest in
adoptive-transfer approaches to treat cancer with Mfs.

CD47 SIGNALS ‘‘DON’T EAT ME’’

In watching a movie of phagocytosis, it is easy to assume that
failure of a seemingly activated Mf to engulf a target reflects a
lack of surface “opsonization” or signaling by molecules, such
as IgG. However, it is now clear that, in addition to “foreign”
signals, there are also opposing signals for specific recogni-
tion of “self.” If opsonization is analogous to putting your foot
on the gas, the self-signaling is a powerful brake that overrides
the phagocytosis process. Indeed, a dominating and passiv-
ating interaction occurs between the ubiquitous “marker of
self” CD47 membrane protein on a candidate target cell (or
particle) and the Mf membrane receptor SIRPa [35–37].
Phagocytosis of cancer cells that are targeted by opsonizing
IgG might thus benefit by simultaneous blockade of CD47,
even given the limited phagocytic capacity of TAMs (Fig. 1B).
Alternatively, bone marrow–derived Mfs are highly phago-
cytic in studies when SIRPa has been blocked in vitro [35].
Whether systemic injections of such “Ab-primed Fc receptor
plus anti-SIRPa blocked Mfs” can find their way in vivo to a
tumor and subsequently phagocytose opsonized cancer cells
(Fig. 1C) should be very interesting to assess.
Within a Mf that is phospho-activated through engagement of

a target via an IgG–FcgR interaction, simultaneous parallel
engagement of CD47-SIRPa activates the tyrosine phosphatase
SHP1, via SIRPa’s ITIMs, which in turn deactivates the myosin-II
contractile cytoskeleton to greatly impede phagocytosis [26, 38].
F-actin polymerization is uninhibited, and filopodial protrusions
even tend to push a “self-recognized” target away from being
engulfed [39]. More studies are needed of such structure–
function signaling, in part because a deep understanding of the
balance of “eat me” cues (e.g., IgG–FcgR interaction) and “don’t
eat me” signals (CD47-SIRPa) has implications for therapeutic
applications. Initial clinical trials are already focused on anti-
cancer therapy [40], but pre-clinical studies also demonstrate
CD47 utility in reducing Mf uptake of “foreign” nanoparticles
and lentiviral vectors for drug and gene delivery [38, 41].
Before the cloning and formal naming of CD47 in the mid-

1990s [36, 42], this ubiquitous membrane protein was already
referred to as OA3 Ag because of the abundant binding of a
monoclonal IgG (OVTL3) to ovarian cancers. Even earlier,
bivalent F(ab9)2 fragments of this mAb against the single,
extracellular, Ig-like domain of CD47/OA3 had already been
used for targeted radioimaging. Despite ubiquitous expression of
CD47, imaging results were described as showing 80% specificity
in 31 patients [43]. Any inhibition of “self-recognition” is unlikely
to have affected the growth of the tumors in these studies done
decades ago (see below), but through retrospective analyses of
the anti-CD47 injection protocols and outcomes might inform
current concerns of the safety (or not) of anti-CD47 injections in
patients with cancer.

Numerous human cancers have since been reported to display
CD47 at levels .3-fold higher than expression on healthy tissues
[44, 45]. High levels of CD47 seem to correlate with poor clinical
outcomes [44, 46, 47]. CD47 and another immune inhibitor,
PD-L1, are either strongly turned on or are simply selected for
during early cancer development, and both are transcriptionally
controlled by c-Myc as a common oncogene [48, 49]. Low levels of
CD47 on various cancerous and noncancerous cells are typical of
apoptosis and combine with various opsonizing factors to favor
clearance by Mfs [50–52]. Despite these emerging observations,
the processes that occur within the Mfs during phagocytosis
continue to require rigorous study, particularly because most
studies of Mf involvement in tumor shrinkage have relied on
systemic injection of clodronate particles to poison Mfs even
though this approach can cause variability in tumor growth [53,
54] (Fig. 2A) and assumes uptake is efficient in its effects on the
desired cells (TAMs) with no broader effect on other cells (e.g.,
other Mfs or cancer cells). Isolation of Mf from tumors for direct
assessments of phagocytosis seem essential to advancing the field.

Figure 2. Tool kit for studying the effect of CD47 inhibition on tumor
growth. (A) Growth curve of syngeneic, orthotopic B16F10 tumors in
C57 mice show the effects that si-mCD47 and clodronate liposomes
have on tumor growth. Data adapted from Wang et al. [53]. (B)
Analysis of how long untreated orthotopic B16F10 tumors in C57 mice
take to reach 100 mm2 when challenged with either 200,000 or 500,000
cells. Data are adapted from Alvey [unpublished results] and studies,
Wang et al. [53], Bencherif et al. [63], Ali et al. [110], and Sockolosky
et al. [57]; *P # 0.05. (C) Growth curves of orthotopic B16F10 tumors in
C57 mice treated with a combination of anti-CD47 nanobodies and
an Ab that binds tyrosinase-related protein 1 (Trp1). Data adapted
from Sockolosky et al. [57]. i) Log-scale growth highlights differ-
ences in tumor sizes between treatment conditions near the start of
the treatment. ii) Normalizing growth data to d 5 gives a different
interpretation from the reported conclusions in (i): anti-TRP1 has
only a small effect, but a combination with the anti-CD47 nanobody
can significantly reduce tumor growth.
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ANTI-CD47 THERAPY AND SAFETY

Clinical trials of CD47 blockade for therapy are rapidly emerging
with anti-human CD47 Abs (Table 1). These trials rely on TAMs
and, perhaps, on infiltrating monocytes that are partially or fully
inhibited from recognizing tumors as self [44, 46]. A few
preclinical models with syngeneic tumors have shown partial
inhibition of tumor growth when using either anti-mCD47 or
small interfering RNA knockdown of Cd47 with nanoparticles
[53, 55]. Success against human-derived xenografts has extended
to human cancer stem cells in mice [56]. However, most
preclinical models show CD47 disruption alone is insufficient
[46, 55, 57]. Strongly pro-phagocytic signals (like a heavy foot on
the gas pedal) combined with effective inhibition of CD47 (to
eliminate any braking) seem necessary to drive phagocytosis of
cancer cells by TAMs [46, 55, 57] (Fig. 1B). Anti-CD47 Abs had
been thought sufficient to inhibit CD47 and activate phagocytosis
through Fc engagement, but results have been mixed at best,
even when combined with tumor pro-phagocytic signals, such as
calreticulin and phosphatidylserine [58–61].
One recent study [62] failed to replicate any efficacy with anti-

mCD47 inhibition and questioned the statistical significance of
past data [44]. An additional concern arose with the syngeneic
orthotopic breast tumor model used in both studies because the
tumors were reported to spontaneously regress during the
replication studies [62]. An alternative, syngeneic, orthotopic
tumor model with well-documented robustness in reproducibility
is the melanoma model B16F10, derived from, and engrafted in,
C57 mice. This model shows consistent tumor growth rates
between different laboratories and over time, which suggests it is
a very predictable and useful model [53, 63] (Fig. 2B); although
the B16F10 cells can reportedly change phenotype with loss of
their dark melanin pigmentation after extended passage in
standard culture. Even with a reliable tumor model, another
cause of uncertainty in the field seems to arise from the

numerous ways tumor growth data are reported: publications
commonly show either tumor volume (often assuming shape or
height), tumor cross-sectional area (measured or estimated from
shape) or normalized tumor area, but each tumor metric can
yield a different conclusion. In one recent study of B16F10
tumors, for example, the authors reported that injection of an Ab
against the melanin-pathway factor tyrosinase-related protein 1
(TRP1) was sufficient to significantly reduce tumor growth in
mice [57]. However, anti-TRP1–treated tumors were 2–3-fold
smaller than control tumors within 1 d after treatment started
(Fig. 2C[i]). When the data are normalized to that d 5 time
point, anti-TRP1 shows no effect, whereas the combination of
anti-TRP1 and anti-CD47 nanobody does seem to inhibit tumor
growth when normalized (Fig. 2C[ii]). Such reanalyzed findings
again suggest that shrinkage of tumors with anti-CD47 requires at
least a combination with another tumor-opsonizing Ab, such as
rituximab or trastuzumab used in other studies [46, 55].
Safety of anti-CD47 Ab injections remains a concern. Injections

of anti-mCD47 in mice and anti-hCD47 monkeys led to a 30%
decrease in RBC counts within days after a single injection [55,
64]. Abs and other serum proteins bind both specifically and
nonspecifically to RBCs [65, 66], to viruses [67], and even to
particles coated with polyethylene glycol [68], and so “eat me”
signals are always present. Perhaps related, one strain of CD47
knockout mouse survived for only 6 mo and had detectable IgG
against mouse RBCs, as well as anemia and organ failure [69].
Inhibiting the receptor for CD47 on Mf, SIRPa, also enhances
phagocytosis in vitro [35, 70] and in vivo [38], and the latter
studies showed that systemic injection of anti-SIRPa Abs led to
rapid clearance of circulating components [38]. Despite the
caution required from these data, a growing number of clinical
trials are using anti-CD47 Abs in patients with diverse liquid and
solid tumors that range from leukemia to colorectal cancer
[71–80] (Table 1).

TABLE 1. CD47-SIRPa clinical trial data

Compound Company Target Treated disease Start date
Estimated

completion date Phase

Hu5F9-G4 Forty Seven Inc.,
Menlo Park, CA, USA

CD47 Colorectal neoplasms/
solid tumors

November 1, 2016 March 1, 2023 Phase I/phase II
(cetuximab)

Hu5F9-G4 Forty Seven Inc. CD47 Non-Hodgkin/large B cell
lymphoma

November 1, 2016 January 1, 2023 Phase I/phase II
(rituximab)

TTI-621 Trillium Therapeutics Inc.,
Mississauga, ON, Canada

CD47 Melanoma/breast
carcinoma/solid tumors

September 1, 2016 December 1, 2019 Phase I

CC-90002 Celgene, Summit, NJ, USA CD47 Acute myeloid leukemia July 27, 2016 July 1, 2019 Phase I
SIRPa Ab Nantes University Hospital,

Nantes, France
SIRPa Hepatocellular carcinoma June 16, 2016 May 1, 2019 Investigation

Hu5F9-G4 Forty Seven Inc. CD47 Acute myeloid leukemia January 27, 2016 January 1, 2018 Phase I
TTI-621 Trillium Therapeutics Inc. CD47 Hematologic malignancies January 19, 2016 June 1, 2019 Phase I
CC-90002 Celgene CD47 Hematologic cancers/

solid tumors
February 13, 2015 January 1, 2018 Phase I

Hu5F9-G4 Forty Seven Inc. CD47 Solid tumors August 12, 2014 August 1, 2017 Phase I
None Medical University South

Carolina, Charleston,
SC, USA

CD47 Multiple myeloma July 13, 2011 July 1, 2014 Prognostic
potential for
chemotherapy

Chronological order of anti-CD47 antibody clinical trials on a variety of human cancers. Most of these trials were started in 2016 and include phase II
studies in combination with an additional opsonizing antibody. Data adapted from references 63–72.
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Blood analyses will likely provide the first evidence of safety in
such human trials with the therapeutically relevant, high doses of
anti-hCD47 injected intravenously. A short-term, mild anemia
is expected and might even be evident in a retrospective analysis
of patient data from the early radioimaging trial that used anti-
CD47 targeting of ovarian cancer [81]. Leukocytes and platelets
in human circulation are all likely affected by systemic anti-CD47
because CD47 is displayed on all cells and is known to prevent
phagocytosis for most cell types. Nonetheless, the ease of a blood
draw and the relatively tight control of hematocrit makes changes
in RBCs easiest to quantify, and the youngest blood cells are
routinely quantified only for RBCs (i.e., reticulocytes) in
providing the clearest measure of an ongoing perturbation. RBC-
clearing of Mfs in the human spleen will likely initially
phagocytose older RBCs, which are the most IgG opsonized and
the stiffest [39]. However, a new steady state for the RBC life span
is difficult to predict, given that CD47-null cells exist only in mice
and not in humans.
Further background on blood production can be informative

given the above. In the normal steady state, every second,
;1-million reticulocytes emerge from marrow to mature in about
1 d to discocyte RBCs, which replace old, opsonized, stiff RBCs
that are cleared at ;100 d (reticulocytes are thus ;1% of RBCs).
Within days of injecting anti-CD47 systemically, the oldest RBCs
should decrease in age to about 70 d, based on noted mouse and
primate studies (;30% loss in RBCs) [55, 64]. This will likely
saturate engorgement of splenic Mfs (splenomegaly when
chronic), which may limit clearance of even younger, CD47-
blocked RBCs. Enhanced production of reticulocytes (perhaps
increasing to ;10%) will compensate for the rapid loss of RBCs.
This degree of compensation is also observed in humans, who,
secondarily to other genetic defects, lack ;90% of CD47 on their
RBCs [82, 83]. Within weeks of continued anti-CD47 injections,
the anemia is likely to become better compensated, and
reticulocyte production should gradually decrease with the oldest
RBC age remaining low at ;90+ d. An overabundance of CD47
on RBCs allows for a half-max effectiveness in ‘self’-signaling with
just ;10% of normal levels (i.e. 10% of ;250 molecules per sq.
micron on RBC [38]). It will be important, therefore, to
determine whether systemic anti-CD47 binds and blocks up to
;90% of CD47 and thereby mimics tolerable human deficiencies
of CD47 or greatly exceeds such conditions. These projected
estimations illustrate the careful consideration of CD47 quanti-
ties on various cells; determining how much anti-CD47 binds and
blocks can thus make sense of past studies and new clinical results
with humanized anti-CD47 IgG isotypes. Whether some patients
develop anti-RBC antibodies as occurs in Cd47-null non-obese
diabetic (NOD) mice will be a crucial safety issue to address.

Mf BRIDGE TO ACQUIRED IMMUNITY

Although Mf engulfment of cancer cells can contribute to tumor
reduction, phagocytic cells can also present neoantigens to
T cells. Early hints of this have included the noted presence of
IgG against RBCs in some strains of Cd47 knockout mice (i.e.
NOD strain), and differences in the effects of mCD47 blockade
between syngeneic and immune-deficient tumor models [45, 53,

57, 69]. Absent any targeting of mCD47, vaccination studies have
certainly documented T cell activation by Mf and phagocytic
dendritic cells in cancer therapies: for example, implanted
scaffolds that contain tumor lysates and cytokines lead to
acquired immunity—probably after being phagocytosed—in
syngeneic models such as the B16 melanoma model [63, 84]. With
mCD47 blockade, T cells are recruited to tumors by phagocytic
Mfs, even though tumor clearance seems dominated by Mfs in
some studies [57, 64]. Surprisingly, even though PDL1 on cancer
cells is primarily considered to inhibit T cell interactions and
thereby enhance T cell responses, anti-PDL1 IgG can also engage
Mf Fc receptor and indeed has a major role in driving
phagocytosis [55]. With a standard melanoma model (in which
initial treatments were begun before tumors became palpable),
blockade of PDL1 also required blockade of mCD47 for long-term
mouse survival and rechallenge with cancer cells [55].
Other syngeneic tumor models using mCD47 blockades have

relied on endogenous opsonization (e.g., calreticulin [57]) and
showed shrinkage in days, but injection of anti-CD8—which
should deplete T cells—removes any therapeutic effect [85]. This
suggested to the authors that the primary effector cell was the
T cell. Alternatively, T cells displaying an intact anti-CD8 IgG
(typically, IgG1, which strongly engages Fc receptor) could be
the most opsonized cell in or near a tumor (assuming T cell
infiltration), and thus, mCD47-blocked TAMs phagocytosing
such T cells would distract from phagocytosis of weakly opsonized
tumor cells. The process which dominates in the imbalance is
sometimes unclear, but the various reports do seem to question
whether TAMs are effective phagocytic cells and Ag presenters.
TAMs certainly promote tumor growth and are weakly phago-
cytic, at least when compared with peritoneal Mfs [12–14, 17].
TAMs also have low MHC-II, which is required for activation of
T cells [1, 2, 86]. Regardless of the extent to which T cells
contribute, the ability of Mfs to activate T cells should be
considered when evaluating efficacy as well as safety. The
ubiquitous and abundant expression of CD47 on all cells has
already given cause for concern over anti-CD47 therapy, first in
terms of the massive amount of Ab that needs to be injected and
secondly in terms of the possible autoimmune response against
healthy cells, such as the rapidly cleared RBCs.
Concerns over TAMs could perhaps be addressed by adoptive Mf

therapy in combination with CD47–SIRPa blockade (Fig. 1C). Mfs
and dendritic cells would be isolated and/or differentiated, as done
in early adoptive-transfer studies, but they would be first engineered
with Abs and/or SIRPa knockdown or CRISPR knockout [87, 88].
When SIRPa depletion is combined with transfection of Mfs
with presentable cancer Ags, implantation of both the Mfs and
melanoma cells are found to prevent tumor growth [88]. Safety
becomes a major concern, however, because SIRPa knockdown in
Mfs, followed by systemic injection, enhances growth of liver
cancers [87]. SIRPa activates the Tyr-phosphatase SHP1, which has
a multitude of targets and is, therefore, likely involved in multiple
signaling pathways that affect phenotype [26].

Mf PLASTICITY AND MECHANOSENSING

Phenotypes of Mf have classically been divided into 2 or 3 states: a
proinflammatory state (M1); an immune inhibitory, angiogenetic
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state (M2) [89–93]; and a more passive M0 state. Mfs are instead
far more diverse and plastic: Mfs from different tissues indeed
exhibit distinct expression profiles [1]. Studies of Mf diversity use
a variety of surface markers that should be factored into the
interpretation of any study for humans or mice [1, 15, 47, 48, 57,
63, 93–96] (Table 2). In the mouse, the most common Mf Ag is
F4/80, and the CD11b+ subset is only used occasionally, which
might explain some differences in phenotype. Importantly, Mfs
taken from donor tissue and transplanted into a different tissue
partially convert over days or weeks to be increasingly like Mfs in
the new host tissue [1]. Mf phenotype is thus plastic and
controlled by the local microenvironment, with potential effects of
both biochemical and biophysical cues. Any adoptive Mf

approach used to treat solid tumors will, therefore, contend with
their differentiation to TAMs. Broadly understanding and
controlling such differentiation is thus key to Mf-based therapies.
Differentiation of cultured Mfs into the classic M1 phenotype

was done biochemically in early trials of adoptive Mf therapy
before transfer into the host [19, 89]. Plastic culture dishes are
rigid and are now known to affect differentiation, with stem cell
phenotypes in culture affected by the softness of the underlying
matrix in a mechanosensing process that depends on Myosin-II
contractions of the substrate [97] (Fig. 1B). Mf plated on
soft gels exhibit high M1/M2 ratios, whereas stiff gels lead to low
M1/M2 ratios [98]. Stiffening of tissues, such as breast and liver,
is often associated with cancer [99–101] and might even
contribute to genomic heterogeneity of cancer [102], which
complicates therapies with a single molecular target. For Mfs,
premalignant stiffening of tissue could favor conversion to a
nonphagocytic phenotype with a reduced capacity to clear
damaged cells, which again favors cancer.
Mechanistically, transcriptional control is provided by the

nuclear envelope protein, lamin-A, which regulates the nuclear
localization of retinoic acid receptor transcription factors; the
latter is interesting because epigenetic analyses have implicated
retinoic acid in microenvironment regulation of the Mf

phenotype [1]. Different cell types exhibit different expression
changes in response to tissue stiffness, but at least one common
factor—lamin-A—appears mechanosensitive in most (perhaps
all) cell types in tissues [103]. Stiff tissues tend to be under high

mechanical stress, and that stress is transmitted from the cell
surface through the actin-myosin cytoskeleton and to the nuclear
envelope, with lamin-A adjusting its level to sustain the stress
(dissipate is more accurate) [104] and ultimately protect
chromatin from damage [102]. Average levels of lamin-A protein
and transcript increase systematically from soft marrow and soft
brain to stiffer muscle and rigid bone whereas the levels of
lamin-B isoforms remain relatively constant. Mf can of course be
isolated from any tissue or disease site and provide an in vivo test
of the broader nuclear mechanosensing hypothesis. Meta-analysis
of RNA-seq results for monocytes or Mf isolated from different
tissues show lamin-A increasing with tissue stiffness and lamin-B
remaining nearly constant (Fig. 3A).
Solid tumors are typically high in collagen, which generally

determines tissue stiffness and has already been shown for
numerous human cancer types xenografted into mice [103].
TAMs that are isolated from such tumors using standard markers
(F4/80, CD11b) have recently been subject to RNA-seq analysis,
which shows that the ratio of lamin-A reads to lamin-B reads is
similar in TAMs to the same ratio in stiff, normal tissues (Fig. 3B).
Such results are thus consistent with mechanosensing of matrix
microenvironments by Mfs, and such physical effects on the
expression of other genes require careful study. SIRPa is
especially interesting because it was recently shown to be strongly
regulated by retinoic acid [105], which is mechanosensitive in its
downstream effects according to the studies above. If the sensing
of microenvironment and the affected gene circuits do drive an
increase in SIRPa on TAMs within stiff solid tumors, then TAMs
could recognize “self” cancer cells more readily and thus be
passivated. Knockdown of SIRPa would seem logical to counter
such protumorigenic effects, but systemic injections of such
engineered Mfs are found to enhance the growth of liver tumors
in the absence of added tumor opsonization [87].

TARGET RIGIDITY AND SHAPE OVERRIDE
SELF SIGNALING

Mfs not only respond to physical cues, such as the stiffness of
their microenvironments, but also to the targets that they engulf.
With spherical microparticles made of hydrogels and opsonized

TABLE 2. Commonly used markers to identify mouse phagocytes

Cell type Tissue F4/80 CD11b CD11c CD45 CD86 Ly6G CD45 MHC II CCR7 CD206 Reference

Phagocyte Tumor + Majeti et al. [47]
Mf Tumor + Casey et al. [48]
Mf Pan tissue + + Lavin et al.a [1]
Mf Cultured + Sockolosky et al. [57]
Dendritic Cryogel implant + + Bencherif et al. [63]
Monocyte Blood, lung tumor + + + Hann et al. [94]
Neutrophil Bone marrow + + Dorward et al. [95]
Neutrophil Bone marrow + + + Swamydas et al. [96]
MO Cultured 2 + Jablonski et al. [93]
M1 Cultured + + + 2 Jablonski et al. [93]
M2 Tumor + 2 + Colegio et al. [15]

Markers frequently used to identify phagocytic cells (macrophages, neutrophils, monocytes) and different macrophage polarizations organized by
publication. aThe Lavin et al. [1] study of Mfs in multiple tissues used the indicated markers, sometimes supplemented with additional surface markers.
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by IgG, engulfment is proportional to stiffness, which was also
shown to drive focal adhesion protein assembly at the phagocytic
synapse [106]. Stiffness changes occur with cancer cells and with
chemotherapy [107, 108]; soft cancer cells might thus escape
anticancer efforts aimed at inhibiting CD47-SIRPa interactions
[55]. To test the relevance of cell stiffness and any modulation by
CD47 signaling of “self,” human RBCs were controllably stiffened
with a dialdehyde cross-linker, and both IgG opsonization and
CD47 blockade were separately controlled [39]. Phagocytosis of
rigidified, discocyte-shaped, human RBCs exceeded that of
flexible RBCs and proved almost independent of CD47 (Fig. 4).
Myosin-II contractile forces are again key in responding to target
rigidity.
Rigid, spherical CD47 beads signal self and thereby impede

engulfment both in vitro and in vivo [38], and sphered RBCs also
recovered some “self” signaling, probably because the discocyte’s
rigid concavities could not contact and signal “self” [39]. Target
shape is, therefore, an additional factor in phagocytosis. Indeed,
polystyrene microbeads melted and distorted into diverse shapes,
for example, are engulfed by Mf more readily as spheres than as
nonspheres when IgG opsonized [109]. Such findings seem
relevant to the diverse shapes of bacteria and fungi, which
invariably have rigid cell walls. With cancer cells that are soft but
CD47-blocked and IgG-opsonized for targeted engulfment by
Mf, phagocytosis could distort and elongate the cells—as seen
for RBCs [39], and this would also tend to weakly oppose

successful phagocytosis. Understanding the details of the various
physical and chemical cues to Mf, therefore, remains an
important endeavor.

CONCLUDING REMARKS

During the past 4–5 decades, Mfs have been found safe, albeit
ineffective, in anticancer therapy, but the general approach is
perhaps reemerging based on the discovery of “marker of self”
CD47 signaling to Mfs. That signaling ultimately turns off
cytoskeletal myosin-II, which otherwise makes the very active
process of engulfing a foreign cell or particle efficient, and so,
inhibiting this signaling at various upstream or downstream
points in the CD47-SIRPa pathway can likewise make engulfment
of “self” cells more efficient. Considerable progress during the
past decade has separately been made toward understanding the
broad plasticity of Mfs and their responses to microenviron-
ments. Initial analyses of $1 mechanosensitive nuclear proteins
suggest that such responsiveness includes the stiffness of the
microenvironment. Phagocytosis is also favored by the stiffness of
a cell or particle, and myosin-II has again been shown to be key.
Myosin-II thus has a vital role in multiple, cytoskeletal-intensive
activities of Mfs.
Complementary to these basic insights into pathways is a

current focus on blockade of CD47-SIRPa to engineer Mfs in
situ for therapy against cancer. The various clinical trials are

Figure 4. Targeting the physical properties and
molecular interactions at the cell surface deter-
mines the efficiency of human RBC engulfment
by human Mf. (Adapted from Sosale et al. [39]).
(A) Phagocytosis increases with IgG opsonization
and with cross-linker–based rigidification of
hRBCs. Phagocytosis of rigid, opsonized RBCs is
independent of hCD47 inhibition in contrast to
“soft,” native RBCs whose uptake is enhanced by
an hCD47-blocking Ab. A “sphering” treatment,
which gives a rounded and rigid hRBC, shows
reduced uptake relative to the discocytes. (B)
Time-lapse images of rigidified hRBC discocytes
show rapid engulfment and lack of deformation
by the Mf. (C) Surface interactions combine
kinetically with physical properties of a candidate
target in the calculus that determines phagocytic
uptake.

Figure 3. Stiff matrix regulation of Lamin-A. (A)
RNA-seq reads per million for Lamin-A and
Lamin-B in tissue Mf from [1], plotted as a
function of tissue stiffness measurements in Swift
et al. [103]. (B) Ratio of RNA reads for lamin-A:
lamin-B in Mfs, including tumor-associated Mfs
isolated from human tumor xenografts per Lavin
et al. [1] and Swift et al. [103]. Subcutaneous
A549 tumors were engrafted in NSG mice and
allowed to grow to 80 mm2 before tumor stiffness
was measured and Mf were profiled.
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likely to encounter some challenges in safety and efficacy, but
injection of anti-hCD47 in patients with cancer was conducted
decades ago for imaging of tumors. Regardless of the success in
Mf engineering in situ or ex vivo for specific applications, the
ability of these fascinating and ubiquitous cells to migrate, engulf,
digest, and perhaps activate the broader immune system against
foreign and diseased cells merits the heightened interest in
understanding basic functions of macrophages.
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